Copied to
clipboard

G = C2×C32.29He3order 486 = 2·35

Direct product of C2 and C32.29He3

direct product, metabelian, nilpotent (class 3), monomial, 3-elementary

Aliases: C2×C32.29He3, (C3×C6).19He3, C33.6(C3×C6), C32⋊C9.12C6, C6.4(He3.C3), (C32×C6).6C32, C32.34(C2×He3), C6.3(He3⋊C3), C6.3(C3.He3), (C2×C32⋊C9).3C3, C3.7(C2×He3.C3), C3.5(C2×He3⋊C3), C3.5(C2×C3.He3), SmallGroup(486,68)

Series: Derived Chief Lower central Upper central

C1C33 — C2×C32.29He3
C1C3C32C33C32⋊C9C32.29He3 — C2×C32.29He3
C1C32C33 — C2×C32.29He3
C1C3×C6C32×C6 — C2×C32.29He3

Generators and relations for C2×C32.29He3
 G = < a,b,c,d,e,f | a2=b3=c3=e3=1, d3=b, f3=c, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, ede-1=cd=dc, ce=ec, cf=fc, fdf-1=bde-1, fef-1=b-1e >

9C3
9C6
3C32
3C32
3C32
3C32
9C9
9C9
9C9
9C9
3C3×C6
3C3×C6
3C3×C6
3C3×C6
9C18
9C18
9C18
9C18
3C3×C9
3C3×C9
3C3×C9
3C3×C9
3C3×C18
3C3×C18
3C3×C18
3C3×C18

Smallest permutation representation of C2×C32.29He3
On 162 points
Generators in S162
(1 106)(2 107)(3 108)(4 100)(5 101)(6 102)(7 103)(8 104)(9 105)(10 84)(11 85)(12 86)(13 87)(14 88)(15 89)(16 90)(17 82)(18 83)(19 93)(20 94)(21 95)(22 96)(23 97)(24 98)(25 99)(26 91)(27 92)(28 109)(29 110)(30 111)(31 112)(32 113)(33 114)(34 115)(35 116)(36 117)(37 118)(38 119)(39 120)(40 121)(41 122)(42 123)(43 124)(44 125)(45 126)(46 127)(47 128)(48 129)(49 130)(50 131)(51 132)(52 133)(53 134)(54 135)(55 136)(56 137)(57 138)(58 139)(59 140)(60 141)(61 142)(62 143)(63 144)(64 145)(65 146)(66 147)(67 148)(68 149)(69 150)(70 151)(71 152)(72 153)(73 154)(74 155)(75 156)(76 157)(77 158)(78 159)(79 160)(80 161)(81 162)
(1 4 7)(2 5 8)(3 6 9)(10 13 16)(11 14 17)(12 15 18)(19 22 25)(20 23 26)(21 24 27)(28 31 34)(29 32 35)(30 33 36)(37 40 43)(38 41 44)(39 42 45)(46 49 52)(47 50 53)(48 51 54)(55 58 61)(56 59 62)(57 60 63)(64 67 70)(65 68 71)(66 69 72)(73 76 79)(74 77 80)(75 78 81)(82 85 88)(83 86 89)(84 87 90)(91 94 97)(92 95 98)(93 96 99)(100 103 106)(101 104 107)(102 105 108)(109 112 115)(110 113 116)(111 114 117)(118 121 124)(119 122 125)(120 123 126)(127 130 133)(128 131 134)(129 132 135)(136 139 142)(137 140 143)(138 141 144)(145 148 151)(146 149 152)(147 150 153)(154 157 160)(155 158 161)(156 159 162)
(1 43 33)(2 44 34)(3 45 35)(4 37 36)(5 38 28)(6 39 29)(7 40 30)(8 41 31)(9 42 32)(10 161 26)(11 162 27)(12 154 19)(13 155 20)(14 156 21)(15 157 22)(16 158 23)(17 159 24)(18 160 25)(46 56 69)(47 57 70)(48 58 71)(49 59 72)(50 60 64)(51 61 65)(52 62 66)(53 63 67)(54 55 68)(73 93 86)(74 94 87)(75 95 88)(76 96 89)(77 97 90)(78 98 82)(79 99 83)(80 91 84)(81 92 85)(100 118 117)(101 119 109)(102 120 110)(103 121 111)(104 122 112)(105 123 113)(106 124 114)(107 125 115)(108 126 116)(127 137 150)(128 138 151)(129 139 152)(130 140 153)(131 141 145)(132 142 146)(133 143 147)(134 144 148)(135 136 149)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153)(154 155 156 157 158 159 160 161 162)
(2 34 44)(3 45 35)(5 28 38)(6 39 29)(8 31 41)(9 42 32)(10 158 20)(11 17 14)(12 25 157)(13 161 23)(15 19 160)(16 155 26)(18 22 154)(21 27 24)(46 49 52)(47 64 63)(48 61 68)(50 67 57)(51 55 71)(53 70 60)(54 58 65)(56 59 62)(66 69 72)(73 83 96)(74 91 90)(75 81 78)(76 86 99)(77 94 84)(79 89 93)(80 97 87)(82 88 85)(92 98 95)(101 109 119)(102 120 110)(104 112 122)(105 123 113)(107 115 125)(108 126 116)(127 130 133)(128 145 144)(129 142 149)(131 148 138)(132 136 152)(134 151 141)(135 139 146)(137 140 143)(147 150 153)(156 162 159)
(1 85 62 43 81 66 33 92 52)(2 99 67 44 83 53 34 79 63)(3 90 55 45 77 68 35 97 54)(4 88 56 37 75 69 36 95 46)(5 93 70 38 86 47 28 73 57)(6 84 58 39 80 71 29 91 48)(7 82 59 40 78 72 30 98 49)(8 96 64 41 89 50 31 76 60)(9 87 61 42 74 65 32 94 51)(10 139 120 161 152 110 26 129 102)(11 143 124 162 147 114 27 133 106)(12 128 109 154 138 101 19 151 119)(13 142 123 155 146 113 20 132 105)(14 137 118 156 150 117 21 127 100)(15 131 112 157 141 104 22 145 122)(16 136 126 158 149 116 23 135 108)(17 140 121 159 153 111 24 130 103)(18 134 115 160 144 107 25 148 125)

G:=sub<Sym(162)| (1,106)(2,107)(3,108)(4,100)(5,101)(6,102)(7,103)(8,104)(9,105)(10,84)(11,85)(12,86)(13,87)(14,88)(15,89)(16,90)(17,82)(18,83)(19,93)(20,94)(21,95)(22,96)(23,97)(24,98)(25,99)(26,91)(27,92)(28,109)(29,110)(30,111)(31,112)(32,113)(33,114)(34,115)(35,116)(36,117)(37,118)(38,119)(39,120)(40,121)(41,122)(42,123)(43,124)(44,125)(45,126)(46,127)(47,128)(48,129)(49,130)(50,131)(51,132)(52,133)(53,134)(54,135)(55,136)(56,137)(57,138)(58,139)(59,140)(60,141)(61,142)(62,143)(63,144)(64,145)(65,146)(66,147)(67,148)(68,149)(69,150)(70,151)(71,152)(72,153)(73,154)(74,155)(75,156)(76,157)(77,158)(78,159)(79,160)(80,161)(81,162), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36)(37,40,43)(38,41,44)(39,42,45)(46,49,52)(47,50,53)(48,51,54)(55,58,61)(56,59,62)(57,60,63)(64,67,70)(65,68,71)(66,69,72)(73,76,79)(74,77,80)(75,78,81)(82,85,88)(83,86,89)(84,87,90)(91,94,97)(92,95,98)(93,96,99)(100,103,106)(101,104,107)(102,105,108)(109,112,115)(110,113,116)(111,114,117)(118,121,124)(119,122,125)(120,123,126)(127,130,133)(128,131,134)(129,132,135)(136,139,142)(137,140,143)(138,141,144)(145,148,151)(146,149,152)(147,150,153)(154,157,160)(155,158,161)(156,159,162), (1,43,33)(2,44,34)(3,45,35)(4,37,36)(5,38,28)(6,39,29)(7,40,30)(8,41,31)(9,42,32)(10,161,26)(11,162,27)(12,154,19)(13,155,20)(14,156,21)(15,157,22)(16,158,23)(17,159,24)(18,160,25)(46,56,69)(47,57,70)(48,58,71)(49,59,72)(50,60,64)(51,61,65)(52,62,66)(53,63,67)(54,55,68)(73,93,86)(74,94,87)(75,95,88)(76,96,89)(77,97,90)(78,98,82)(79,99,83)(80,91,84)(81,92,85)(100,118,117)(101,119,109)(102,120,110)(103,121,111)(104,122,112)(105,123,113)(106,124,114)(107,125,115)(108,126,116)(127,137,150)(128,138,151)(129,139,152)(130,140,153)(131,141,145)(132,142,146)(133,143,147)(134,144,148)(135,136,149), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153)(154,155,156,157,158,159,160,161,162), (2,34,44)(3,45,35)(5,28,38)(6,39,29)(8,31,41)(9,42,32)(10,158,20)(11,17,14)(12,25,157)(13,161,23)(15,19,160)(16,155,26)(18,22,154)(21,27,24)(46,49,52)(47,64,63)(48,61,68)(50,67,57)(51,55,71)(53,70,60)(54,58,65)(56,59,62)(66,69,72)(73,83,96)(74,91,90)(75,81,78)(76,86,99)(77,94,84)(79,89,93)(80,97,87)(82,88,85)(92,98,95)(101,109,119)(102,120,110)(104,112,122)(105,123,113)(107,115,125)(108,126,116)(127,130,133)(128,145,144)(129,142,149)(131,148,138)(132,136,152)(134,151,141)(135,139,146)(137,140,143)(147,150,153)(156,162,159), (1,85,62,43,81,66,33,92,52)(2,99,67,44,83,53,34,79,63)(3,90,55,45,77,68,35,97,54)(4,88,56,37,75,69,36,95,46)(5,93,70,38,86,47,28,73,57)(6,84,58,39,80,71,29,91,48)(7,82,59,40,78,72,30,98,49)(8,96,64,41,89,50,31,76,60)(9,87,61,42,74,65,32,94,51)(10,139,120,161,152,110,26,129,102)(11,143,124,162,147,114,27,133,106)(12,128,109,154,138,101,19,151,119)(13,142,123,155,146,113,20,132,105)(14,137,118,156,150,117,21,127,100)(15,131,112,157,141,104,22,145,122)(16,136,126,158,149,116,23,135,108)(17,140,121,159,153,111,24,130,103)(18,134,115,160,144,107,25,148,125)>;

G:=Group( (1,106)(2,107)(3,108)(4,100)(5,101)(6,102)(7,103)(8,104)(9,105)(10,84)(11,85)(12,86)(13,87)(14,88)(15,89)(16,90)(17,82)(18,83)(19,93)(20,94)(21,95)(22,96)(23,97)(24,98)(25,99)(26,91)(27,92)(28,109)(29,110)(30,111)(31,112)(32,113)(33,114)(34,115)(35,116)(36,117)(37,118)(38,119)(39,120)(40,121)(41,122)(42,123)(43,124)(44,125)(45,126)(46,127)(47,128)(48,129)(49,130)(50,131)(51,132)(52,133)(53,134)(54,135)(55,136)(56,137)(57,138)(58,139)(59,140)(60,141)(61,142)(62,143)(63,144)(64,145)(65,146)(66,147)(67,148)(68,149)(69,150)(70,151)(71,152)(72,153)(73,154)(74,155)(75,156)(76,157)(77,158)(78,159)(79,160)(80,161)(81,162), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36)(37,40,43)(38,41,44)(39,42,45)(46,49,52)(47,50,53)(48,51,54)(55,58,61)(56,59,62)(57,60,63)(64,67,70)(65,68,71)(66,69,72)(73,76,79)(74,77,80)(75,78,81)(82,85,88)(83,86,89)(84,87,90)(91,94,97)(92,95,98)(93,96,99)(100,103,106)(101,104,107)(102,105,108)(109,112,115)(110,113,116)(111,114,117)(118,121,124)(119,122,125)(120,123,126)(127,130,133)(128,131,134)(129,132,135)(136,139,142)(137,140,143)(138,141,144)(145,148,151)(146,149,152)(147,150,153)(154,157,160)(155,158,161)(156,159,162), (1,43,33)(2,44,34)(3,45,35)(4,37,36)(5,38,28)(6,39,29)(7,40,30)(8,41,31)(9,42,32)(10,161,26)(11,162,27)(12,154,19)(13,155,20)(14,156,21)(15,157,22)(16,158,23)(17,159,24)(18,160,25)(46,56,69)(47,57,70)(48,58,71)(49,59,72)(50,60,64)(51,61,65)(52,62,66)(53,63,67)(54,55,68)(73,93,86)(74,94,87)(75,95,88)(76,96,89)(77,97,90)(78,98,82)(79,99,83)(80,91,84)(81,92,85)(100,118,117)(101,119,109)(102,120,110)(103,121,111)(104,122,112)(105,123,113)(106,124,114)(107,125,115)(108,126,116)(127,137,150)(128,138,151)(129,139,152)(130,140,153)(131,141,145)(132,142,146)(133,143,147)(134,144,148)(135,136,149), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153)(154,155,156,157,158,159,160,161,162), (2,34,44)(3,45,35)(5,28,38)(6,39,29)(8,31,41)(9,42,32)(10,158,20)(11,17,14)(12,25,157)(13,161,23)(15,19,160)(16,155,26)(18,22,154)(21,27,24)(46,49,52)(47,64,63)(48,61,68)(50,67,57)(51,55,71)(53,70,60)(54,58,65)(56,59,62)(66,69,72)(73,83,96)(74,91,90)(75,81,78)(76,86,99)(77,94,84)(79,89,93)(80,97,87)(82,88,85)(92,98,95)(101,109,119)(102,120,110)(104,112,122)(105,123,113)(107,115,125)(108,126,116)(127,130,133)(128,145,144)(129,142,149)(131,148,138)(132,136,152)(134,151,141)(135,139,146)(137,140,143)(147,150,153)(156,162,159), (1,85,62,43,81,66,33,92,52)(2,99,67,44,83,53,34,79,63)(3,90,55,45,77,68,35,97,54)(4,88,56,37,75,69,36,95,46)(5,93,70,38,86,47,28,73,57)(6,84,58,39,80,71,29,91,48)(7,82,59,40,78,72,30,98,49)(8,96,64,41,89,50,31,76,60)(9,87,61,42,74,65,32,94,51)(10,139,120,161,152,110,26,129,102)(11,143,124,162,147,114,27,133,106)(12,128,109,154,138,101,19,151,119)(13,142,123,155,146,113,20,132,105)(14,137,118,156,150,117,21,127,100)(15,131,112,157,141,104,22,145,122)(16,136,126,158,149,116,23,135,108)(17,140,121,159,153,111,24,130,103)(18,134,115,160,144,107,25,148,125) );

G=PermutationGroup([[(1,106),(2,107),(3,108),(4,100),(5,101),(6,102),(7,103),(8,104),(9,105),(10,84),(11,85),(12,86),(13,87),(14,88),(15,89),(16,90),(17,82),(18,83),(19,93),(20,94),(21,95),(22,96),(23,97),(24,98),(25,99),(26,91),(27,92),(28,109),(29,110),(30,111),(31,112),(32,113),(33,114),(34,115),(35,116),(36,117),(37,118),(38,119),(39,120),(40,121),(41,122),(42,123),(43,124),(44,125),(45,126),(46,127),(47,128),(48,129),(49,130),(50,131),(51,132),(52,133),(53,134),(54,135),(55,136),(56,137),(57,138),(58,139),(59,140),(60,141),(61,142),(62,143),(63,144),(64,145),(65,146),(66,147),(67,148),(68,149),(69,150),(70,151),(71,152),(72,153),(73,154),(74,155),(75,156),(76,157),(77,158),(78,159),(79,160),(80,161),(81,162)], [(1,4,7),(2,5,8),(3,6,9),(10,13,16),(11,14,17),(12,15,18),(19,22,25),(20,23,26),(21,24,27),(28,31,34),(29,32,35),(30,33,36),(37,40,43),(38,41,44),(39,42,45),(46,49,52),(47,50,53),(48,51,54),(55,58,61),(56,59,62),(57,60,63),(64,67,70),(65,68,71),(66,69,72),(73,76,79),(74,77,80),(75,78,81),(82,85,88),(83,86,89),(84,87,90),(91,94,97),(92,95,98),(93,96,99),(100,103,106),(101,104,107),(102,105,108),(109,112,115),(110,113,116),(111,114,117),(118,121,124),(119,122,125),(120,123,126),(127,130,133),(128,131,134),(129,132,135),(136,139,142),(137,140,143),(138,141,144),(145,148,151),(146,149,152),(147,150,153),(154,157,160),(155,158,161),(156,159,162)], [(1,43,33),(2,44,34),(3,45,35),(4,37,36),(5,38,28),(6,39,29),(7,40,30),(8,41,31),(9,42,32),(10,161,26),(11,162,27),(12,154,19),(13,155,20),(14,156,21),(15,157,22),(16,158,23),(17,159,24),(18,160,25),(46,56,69),(47,57,70),(48,58,71),(49,59,72),(50,60,64),(51,61,65),(52,62,66),(53,63,67),(54,55,68),(73,93,86),(74,94,87),(75,95,88),(76,96,89),(77,97,90),(78,98,82),(79,99,83),(80,91,84),(81,92,85),(100,118,117),(101,119,109),(102,120,110),(103,121,111),(104,122,112),(105,123,113),(106,124,114),(107,125,115),(108,126,116),(127,137,150),(128,138,151),(129,139,152),(130,140,153),(131,141,145),(132,142,146),(133,143,147),(134,144,148),(135,136,149)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153),(154,155,156,157,158,159,160,161,162)], [(2,34,44),(3,45,35),(5,28,38),(6,39,29),(8,31,41),(9,42,32),(10,158,20),(11,17,14),(12,25,157),(13,161,23),(15,19,160),(16,155,26),(18,22,154),(21,27,24),(46,49,52),(47,64,63),(48,61,68),(50,67,57),(51,55,71),(53,70,60),(54,58,65),(56,59,62),(66,69,72),(73,83,96),(74,91,90),(75,81,78),(76,86,99),(77,94,84),(79,89,93),(80,97,87),(82,88,85),(92,98,95),(101,109,119),(102,120,110),(104,112,122),(105,123,113),(107,115,125),(108,126,116),(127,130,133),(128,145,144),(129,142,149),(131,148,138),(132,136,152),(134,151,141),(135,139,146),(137,140,143),(147,150,153),(156,162,159)], [(1,85,62,43,81,66,33,92,52),(2,99,67,44,83,53,34,79,63),(3,90,55,45,77,68,35,97,54),(4,88,56,37,75,69,36,95,46),(5,93,70,38,86,47,28,73,57),(6,84,58,39,80,71,29,91,48),(7,82,59,40,78,72,30,98,49),(8,96,64,41,89,50,31,76,60),(9,87,61,42,74,65,32,94,51),(10,139,120,161,152,110,26,129,102),(11,143,124,162,147,114,27,133,106),(12,128,109,154,138,101,19,151,119),(13,142,123,155,146,113,20,132,105),(14,137,118,156,150,117,21,127,100),(15,131,112,157,141,104,22,145,122),(16,136,126,158,149,116,23,135,108),(17,140,121,159,153,111,24,130,103),(18,134,115,160,144,107,25,148,125)]])

70 conjugacy classes

class 1  2 3A···3H3I3J6A···6H6I6J9A···9X18A···18X
order123···3336···6669···918···18
size111···1991···1999···99···9

70 irreducible representations

dim111133333333
type++
imageC1C2C3C6He3C2×He3He3.C3He3⋊C3C3.He3C2×He3.C3C2×He3⋊C3C2×C3.He3
kernelC2×C32.29He3C32.29He3C2×C32⋊C9C32⋊C9C3×C6C32C6C6C6C3C3C3
# reps11882266126612

Matrix representation of C2×C32.29He3 in GL7(𝔽19)

18000000
0100000
0010000
0001000
0000100
0000010
0000001
,
1000000
01100000
00110000
00011000
0000100
0000010
0000001
,
1000000
01100000
00110000
00011000
00001100
00000110
00000011
,
1000000
0010000
0001000
01100000
0000010
0000001
0000100
,
1000000
0100000
00110000
0007000
0000100
00000110
0000007
,
1000000
00160000
00016000
01600000
00001700
00000170
0000005

G:=sub<GL(7,GF(19))| [18,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,11],[1,0,0,0,0,0,0,0,0,0,11,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,7],[1,0,0,0,0,0,0,0,0,0,16,0,0,0,0,16,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,17,0,0,0,0,0,0,0,17,0,0,0,0,0,0,0,5] >;

C2×C32.29He3 in GAP, Magma, Sage, TeX

C_2\times C_3^2._{29}{\rm He}_3
% in TeX

G:=Group("C2xC3^2.29He3");
// GroupNames label

G:=SmallGroup(486,68);
// by ID

G=gap.SmallGroup(486,68);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,979,224,176,873,735]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^3=c^3=e^3=1,d^3=b,f^3=c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,e*d*e^-1=c*d=d*c,c*e=e*c,c*f=f*c,f*d*f^-1=b*d*e^-1,f*e*f^-1=b^-1*e>;
// generators/relations

Export

Subgroup lattice of C2×C32.29He3 in TeX

׿
×
𝔽